Factoring the characteristic polynomial of a lattice

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factoring the characteristic polynomial of a lattice

Article history: Received 31 October 2014 Available online xxxx

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Factorization of the Characteristic Polynomial of a Lattice using Quotient Posets

We introduce a new method for showing that the roots of the characteristic polynomial of a finite lattice are all nonnegative integers. Our method gives two simple conditions under which the characteristic polynomial factors. We will see that Stanley’s Supersolvability Theorem is a corollary of this result. We can also use this method to demonstrate a new result in graph theory and give new pro...

متن کامل

Factoring a Polynomial with Multiple-Roots

A given polynomial, possibly with multiple roots, is factored into several lower-degree distinct-root polynomials with natural-order-integer powers. All the roots, including multiplicities, of the original polynomial may be obtained by solving these lowerdegree distinct-root polynomials, instead of the original high-degree multiple-root polynomial directly. The approach requires polynomial Grea...

متن کامل

Some iterations for factoring a polynomial

This paper describes an iterative method for factoring a polynomial that bears the same relation to Bairstow's method as the secant method in a single variable bears to Newton's method. Like the secant method, the generalized secant method requires only one function evaluation for each iteration, and like the secant method it converges to a simple factor with order (1+75)/2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2015

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2015.06.006